语音识别 内容详情
语音识别发展趋势
 语音识别 2018-06-27 15:30:13

  语音识别作为人工智能发展最早、且率先商业化的技术,近几年来随着深度学习技术的突破,识别准确率大幅提升,带动了一波产业热潮。以下对语音识别发展趋势分析。

  语言是人类思想最重要的载体,是人们交流最有效、最方便、最自然的方式。语音识别技术就是让机器接收,识别和理解语音信号,并将其转换成相应数字信号的技术。语音识别是涉及很多学科的一门交叉学科,涉及到声学、语音语言学、数理统计、信息理论、机器学习以及人工智能等学科。语音识别系统可以把操作人员的大量重复劳动交给机器来处理,节约了人力,提高了效益。例如:专家咨询系统、信息服务系统、自然语音识别系统、寻呼服务、故障服务、智能对话查询系统、语音订票系统等。在某些恶劣环境和对人身有伤害的特殊环境下,例如地下、深水、辐射或高温等地方,就可以通过语音识别系统发布指令,让机器完成各种工作。

  近三十年来,语音识别技术发展迅速,逐渐从实验室走向市场,形成产品。在信息处理、通信与电子系统、自动控制等领域相继出现了不同用途的语音识别系统,已经逐渐显露出其强大的技术优势和生命力。现在实际中应用比较广泛的语音识别软件有:Nuance、IBM公司的Viavoice、Android系统下的Voice Actions、苹果手机上的Siri以及国内科大讯飞的语音识别产品等。我们国家对语音识别研究一直比较重视,中科院自动化所、清华大学、科大讯飞等很多科研院所和企业都投入了大量的人员和资金进行语音识别的研究开发。

  在智能家居,不管是智能家电还是,语音识别技术都是必备的基本功能之一。据知名市场调研公司《Markets And Markets》发布的调查报告称,全球智能家居市场规模将在2022年达到1220亿美元,2016-2022年年均增长率预测为14%。而在机器人方面,研究机构IDC预测,至2020年,全球机器人与相关服务市场规模将由2016年的915亿美元增至1880亿美元。从这两点数据来看,可想而知未来智能家居的市场之大。

  在控制方式上,除了部分智能家电之外,语音控制已经成为了市场的主流,而这就是语音识别市场的商机。未来,作为人机自然交互的前提之一,语音识别必然是智能家居的发展趋势,只有语音识别的准确率接近完美,人机的自然交互才能继续开展。在智能家居市场的推动下,语音识别技术必将成为重点发展对象。

  语音识别技术发展到今天,特别是中小词汇量非特定人语音识别系统识别精度已经大于98%,对特定人语音识别系统的识别精度就更高。这些技术已经能 够满足通常应用的要求。由于大规模集成电路技术的发展,这些复杂的语音识别系统也已经完全可以制成专用芯片,大量生产。在西方经济发达国家,大量的语音识 别产品已经进入市场和服务领域。一些用户交机、电话机、手机已经包含了语音识别拨号功能,还有语音记事本、语音智能玩具等产品也包括语音识别与语音合成功 能。人们可以通过电话网络用语音识别口语对话系统查询有关的机票、旅游、银行信息,并且取得很好的结果。调查统计表明多达85%以上的人对语音识别的信息 查询服务系统的性能表示满意。

  可以预测在近五到十年内,语音识别系统的应用将更加广泛。各种各样的语音识别系统产品将出现在市场上。人们也将调整自己的说话方式以适应各种各样 的识别系统。在短期内还不可能造出具有和人相比拟的语音识别系统,要建成这样一个系统仍然是人类面临的一个大的挑战,我们只能一步步朝着改进语音识别系统 的方向一步步地前进。至于什么时候可以建立一个像人一样完善的语音识别系统则是很难预测的。就像在60年代,谁又能预测今天超大规模集成电路技术会对我们 的社会产生这么大的影响。

  语音识别遇到的困难

  目前,语音识别研究工作进展缓慢,困难具体表现在:

  (一)语音识别系统对环境敏感,采集到的语音训练系统只能应用于与之对应的环境,而且当用户输入错误时不能正确响应,应用起来相对困难;

  (二)必须采取新的新号处理方法来处理人在高噪声环境下的发音变化的问题;(三)语言模型、语法及词法模型在中、大词汇量连续语音识别中无法正确、合理的运用,需要有效地利用语言学、心理学及生理学等方面的研究成果;现阶段的科学技术对人类生理学诸如听觉系统分析理解功能、大脑神经系统的控制功能等还不够,更无法应用于语音识别;语音识别系统从实验室演示系统向商品的转化过程中还有许多具体细节技术问题需要解决。

  如今,语音识别从算法到模型都有了质的变化,在加上语音领域(语音合成等)的其他研究,语音技术陆续进入工业、家庭机器人、通信、车载导航等各个领域中。当有一天,机器能够真正「理解」人类语言,并作出回应,那时我们必将迎来一个崭新的时代。以上对语音识别发展趋势分析。

热门推荐

相关资讯

更多

免费报告

更多
语音识别相关研究报告
语音识别相关研究报告
关于我们 帮助中心 联系我们 法律声明
京公网安备 11010502031895号
闽ICP备09008123号-21