次氯酸钠 内容详情
次氯酸钠技术最新发展趋势分析
 次氯酸钠 2000-01-01 00:00:00

  一、国外同类技术重点研发方向

  次氯酸钠的不稳定性主要表现在没有还原剂存在时,自身发生分解反应。主要是在光照、加热、酸性环境或重金属离子存在下,自发发生分解反应,主要反应方程式见式(1)-(4)。

  2NaClO=2NaCl+O2 (1)

  3NaClO=2NaCl+NaClO3(2)

  2HClO=2HCl+O2 (3)

  HClO+HCl=H2O+Cl2 (4)

  由于次氯酸钠大多是采用氢氧化钠溶液吸收氯气的方法进行制备,在强碱环境下,次氯酸钠不仅水解程度较小,而且稳定性较好。反应(4)-(7)在标准状态下的热力学性质变化值△rHmΘ,△rGmΘ和△rSmΘ,计算结果列于表1。

  图表 2:在298.15K下,NaClO分解反应的热力学性质变化

反应

△rHmΘ(kJ·mol-1)

△rGmΘ(kJ·mol-1)

△rSmΘ(J·mol-1·K-1)

(1

-119.94

-188.94

236.152

(2)

-116.73

-160.15

152.30

(3)

-92.50

-102.70

34.152

(4

2.22

-25.99

104.53

  资料来源:陕西科技大学学报

  由图表3可知,在298.15K时,标准状态下反应(1),(2和(3)为自发的,且自发进行的趋势很大。反应(4)虽属于吸热反应,但反应的△rGmΘ《0,表明在标准状态下也有自发进行的趋势,且升高反应温度有利于该分解反应的进行。所以,从热力学的角度看,次氯酸钠具有自发进行分解反应的趋势,表明次氯酸钠的热力学稳定性很差。

  国外最新研究表明,在碱性条件下,次氯酸钠水溶液的分解主要是由反应(1)引起的一系列反应中的各组分相互作用的宏观结果,其中原子氧的放出是其分解的关键步骤,分解反应宏观上表现为准一级反应。由于次氯酸钠的分解反应是由一组复杂的反应所组成的,并随浓度、温度、pH等因素的变化而变化,占优势的反应会随着反应条件的变化而改变。根据阿累尼乌斯定律可知,当浓度一定时,温度升高,反应速度增大,因此,次氯酸钠溶液适宜在低温保存。由于次氯酸钠的分解反应在宏观上属于准一级反应,因此当反应温度不变时,增大NaClO浓度,分解速率也随之增大。因此,从提高储存稳定性的角度看,次氯酸钠适宜在低浓度下储存。但是,这样会大大提高储存、运输等成本。

  国外企业研究了酸度对次氯酸钠溶液分解的影响,发现H+对次氯酸钠的分解反应有催化作用,次氯酸钠的有效氯降解属于表观零级反应,溶液的pH每提高一个单位,反应速度大约减慢20%左右。所以提高溶液的pH可明显地提高次氯酸钠溶液的稳定性,这也正是次氯酸钠溶液都在强碱性条件下储存的原因。然而,当次氯酸钠做杀菌剂使用时,则应将其酸度控制在pH《8,这是因为体系的pH提高后,次氯酸钠的稳定性虽然提高了,但活性却降低了,甚至会失去活性。因此,次氯酸钠作为消毒剂使用时,一般应将消毒体系的酸度控制在pH为7左右。此外,实验表明重金属离子对次氯酸钠的分解有催化作用,其催化分解反应可表示如下:

  2MO+NaClO=NaCl+M2O3

  M2O3+NaClO=NaCl+2MO+O2

  式中M为重金属,特别是Fe2+,Ni2+,Co2+,Mn2+和Cu2+等重金属离子存在,将加速上述分解反应,而Ca2+,Mg2+对次氯酸钠的稳定性基本无影响。

  二、国内次氯酸钠研发技术路径分析

  1、降低NaClO溶液的浓度

  通过对次氯酸钠分解反应的热力学和动力学分析可看出,次氯酸钠溶液浓度越低,分解反应进行的趋势越小,且分解速度越慢,其性能越稳定。因而采用将次氯酸钠溶液稀释的方法,配成较低浓度的溶液进行储存,可以有效地减缓次氯酸钠溶液的分解,增强其稳定性。而作为医院、饮食业、旅馆、家庭等消毒、杀菌、去污用的次氯酸钠溶液,一般不需很高的浓度,所以对次氯酸钠溶液进行稀释,既能增强其稳定性,又不会给使用带来经济损失。但是,次氯酸钠作为化工产品出厂,GB19106-2003要求其有效氯质量分数不低于5%,因此不能无限制降低其浓度。

  2、低温、避光储存

  温度和紫外光对次氯酸钠的稳定性影响很大,升高温度或光照(特别是紫外光),次氯酸钠溶液的分解速度将明显加快。这是因为一方面升高温度、光照,使得分子运动速度加快,活化能降低,增大了反应体系中活化分子的含量,使得有效碰撞机会增大,反应速度常数增大,从而使分解速度加快;另一方面,可能与次氯酸钠的分解机理有关。从上述讨论可知,次氯酸钠分解反应的关键步骤是原子氧的放出,而光照或加热有利于原子氧的生成。盛梅等研究表明,当温度低于25℃时分解缓慢,温度高于30℃时分解速度明显加快。光照20h,次氯酸钠的有效氯会降解90%。另外,次氯酸钠分解生成的O2,Cl2都是气体物质,长时间密闭保存会给包装容器带来危险。因此,次氯酸钠的包装容器都要留出放气孔,以防止发生安全事故。因而,次氯酸钠溶液应尽量在低温、避光环境下储存,可有效地降低分解速度。

  3、控制NaClO溶液的酸度

  次氯酸钠溶液的pH对其稳定性有很大的影响。一般pH在12以上,次氯酸钠溶液相对较稳定,体系中有效氯的变化较小;当pH超过12.6时,次氯酸钠溶液有效氯含量随贮存时间的延长下降较少,稳定性较好。如将有效氯质量浓度为7994mg/L的次氯酸钠溶液分别调节pH为4.0,7.0,10.0和13.0,并置于密闭容器内在常温下贮存186d,结果显示pH=4时有效氯下降率为68.43%,而pH=13时下降率仅为9.63%。所以,提高溶液的pH或碱度可明显提高次氯酸钠溶液的稳定性。一般地,在生产中将次氯酸钠溶液中的余留碱量控制在0.5%左右,也可采取加入适量的碳酸钠或碳酸氢钠作为溶液稳定剂的方法,增加溶液的稳定性。这主要是由于增大pH,即增大了碱的浓度,从而抑制了H+对分解反应的催化作用(对ClO-的极化作用),降低了次氯酸钠的分解速度。

  4、添加稳定剂

  向次氯酸钠溶液中添加稳定剂可有效提高其稳定性。次氯酸钠溶液中的有效氯损失率随着溶液中Fe3+含量的增加而增加,而且在贮存初期下降较快,后期下降趋缓。在含有Fe3+的次氯酸钠溶液中加入硅酸钠稳定剂,当硅酸钠的物质的量分数为8%时,试样放置15d,有效氯损失29.58%;当硅酸钠的物质的量分数为10%时,有效氯损失下降为18.38%;不添加稳定剂的对比样品的有效氯损失达65%,可见硅酸钠对次氯酸钠溶液确有较好的稳定作用。雍丽珠等在有效氯质量分数为13.4%的次氯酸钠溶液中,分别加入质量分数为0.1%的硅酸钠、焦磷酸钠、邻苯二甲酸氢钾和碳酸氢钠,密封、避光5d后测得次氯酸钠的有效氯质量分数分别为13.1%,13.0%,13.1%,13.3%,而不加稳定剂的对比液的有效氯质量分数仅为6.8%。结果说明,添加很少量无机物作稳定剂后,次氯酸钠水溶液的稳定性均大大增强了,其中碳酸氢钠的效果最好,几乎可以保持有效氯质量分数在5d内不变。在次氯酸钠溶液中加入半乳糖醇、甘露糖醇或三梨醇(也可使用六羟基环已烷及其磷酸盐),能有效地阻止重金属离子引起的分解,提高次氯酸钠溶液的稳定性;在次氯酸钠溶液中加入含氨基的化合物如乙酰胺、双氰胺、尿素和异氰尿等,可使溶液具有良好的稳定性和较低的腐蚀性。文献发现溴化物对次氯酸钠溶液具有稳定作用,而以KBr+8-羟基喹啉的稳定作用最佳。可见稳定剂的加入确实可以有效地提高次氯酸钠溶液的稳定性。但是,在选用稳定剂时也应该注意,稳定剂的加入不应该给次氯酸钠的应用带来不便,如有些稳定剂可能成为其他反应的“毒素”。因此,在以次氯酸钠为反应原料时,应该充分考虑稳定剂可能带来的影响。

热门推荐

相关资讯

更多

免费报告

更多
次氯酸钠相关研究报告
关于我们 帮助中心 联系我们 法律声明
京公网安备 11010502031895号
闽ICP备09008123号-21